On Rad-H-supplemented Modules

Authors

  • M. Mirkarim Department of Mathematics, University of Mazandaran, Babolsar, Iran
  • Y. Talebi Department of Mathematics, University of Mazandaran, Babolsar, Iran
Abstract:

Let M be a right R-module. We call M Rad-H-supplemented iffor each Y M there exists a direct summand D of M such that(Y + D)/D (Rad(M) + D)/D and (Y + D)/Y (Rad(M) + Y )/Y .It is shown that:(1) Let M = M1M2, where M1 is a fully invariant submodule of M.If M is Rad-H-supplemented, thenM1 andM2 are Rad-H-supplemented.(2) Let M = M1 M2 be a duo module and Rad--supplemented. IfM1 is radical M2-sejective (or M2 is radical M1-sejective), then M isRad-H-supplemented. (3) Let M = ni=1Mi be a finite direct sum ofmodules. If Mi is generalized radical Mj-projective for all j > i andeach Mi is Rad-H-supplemented, then M is Rad-H-supplemented.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

On H-cofinitely supplemented modules

A module $M$ is called $emph{H}$-cofinitely supplemented if for every cofinite submodule $E$ (i.e. $M/E$ is finitely generated) of $M$ there exists a direct summand $D$ of $M$ such that $M = E + X$ holds if and only if $M = D + X$, for every submodule $X$ of $M$. In this paper we study factors, direct summands and direct sums of $emph{H}$-cofinitely supplemented modules. Let $M$ be an $emph{H}...

full text

Rad - ⊕ - Supplemented Modules

In this paper we provide various properties of Rad-⊕-supplemented modules. In particular, we prove that a projective module M is Rad⊕-supplemented if and only if M is ⊕-supplemented, and then we show that a commutative ring R is an artinian serial ring if and only if every left R-module is Rad-⊕-supplemented. Moreover, every left R-module has the property (P ∗) if and only if R is an artinian s...

full text

on h-cofinitely supplemented modules

a module $m$ is called $emph{h}$-cofinitely supplemented if for every cofinite submodule $e$ (i.e. $m/e$ is finitely generated) of $m$ there exists a direct summand $d$ of $m$ such that $m = e + x$ holds if and only if $m = d + x$, for every submodule $x$ of $m$. in this paper we study factors, direct summands and direct sums of $emph{h}$-cofinitely supplemented modules. let $m$ be an $emph{h}$...

full text

Generalized Supplemented Modules

Let R be a ring and M a right R-module. It is shown that: (1) M is Artinian if and only if M is a GAS-module and satisfies DCC on generalized supplement submodules and on small submodules; (2) if M satisfies ACC on small submodules, then M is a lifting module if and only if M is a GASmodule and every generalized supplement submodule is a direct summand of M if and only if M satisfies (P ∗); (3)...

full text

On the Finsler modules over H-algebras

In this paper, applying the concept of generalized A-valued norm on a right $H^*$-module and also the notion of ϕ-homomorphism of Finsler modules over $C^*$-algebras we first improve the definition of the Finsler module over $H^*$-algebra and then define ϕ-morphism of Finsler modules over $H^*$-algebras. Finally we present some results concerning these new ones.

full text

A generalization of $oplus$-cofinitely supplemented modules

‎We say that a module $M$ is a emph{cms-module} if‎, ‎for every cofinite submodule $N$ of $M$‎, ‎there exist submodules $K$ and $K^{'}$ of $M$ such that $K$ is a supplement of $N$‎, ‎and $K$‎, ‎$K^{'}$ are mutual supplements in $M$‎. ‎In this article‎, ‎the various properties of cms-modules are given as a generalization of $oplus$-cofinitely supplemented modules‎. ‎In particular‎, ‎we prove tha...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 2  issue 1

pages  1- 9

publication date 2014-06-30

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023